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Spontaneous facial expression in a small group can be automatically measured:
An initial demonstration
Manual measurement of facial expression is labor intensive and difficult to standardize.
Automated measurement seeks to address the need for valid, efficient, and reproducible
measurement. Recent systems have shown promise in posed behavior and in structured
contexts. Can automated measurement perform in more natural, less constrained
settings? Previously unacquainted young adults sat around a circular table for 30
minutes of conversation. Video was selected for manual and automatic coding of Facial
Action Coding System action units 6 (cheek raise) and 12 (lip corner pull), which
together signal enjoyment. Moderate out-of-plane head motion and occlusion, which
are challenging for automatic processing, were both common, as participants turned
toward and away from each other or consumed drinks. Concurrent validity for both
action units was high. This is the first study to find that automated measurement of
facial action in relatively unconstrained contexts can achieve results comparable to that

of manual coding.
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Facial expression has been a focus of emotion research for over a hundred years
(Darwin, 1872/1998). It is central to several leading theories of emotion (Ekman, 1992;
Izard, 1977; Tomkins, 1962) and has been the focus of at times heated debate about
issues in emotion science (Ekman, 1994; Fridlund, 1994; Russell, 1994). Facial
expression figures prominently in research on almost every aspect of emotion, including
psychophysiology (Levenson, Ekman, & Friesen, 1990), neural correlates (Ekman,
Davidson, & Friesen, 1990), development (Malatesta, Culver, Tesman, & Shephard,
1989) perception (Ambadar, Schooler, & Cohn, 2005), addiction (Griffin & Sayette,
2008), social processes (Hatfield, Cacioppo, & Rapson, 1992), depression (Reed,
Sayette, & Cohn, 2007) and other emotion disorders (Tremeau, et al., 2005), to name a
few.

Because of its importance to the study of emotion, a number of observer-based
systems of facial expression measurement have been developed (Cohn & Ekman, 2005).
Of these various systems, the Facial Action Coding System (FACS) (Ekman, Friesen, &
Hager, 2002) is the most comprehensive, psychometrically rigorous, and widely used
(Ekman & Rosenberg, 2005). Using FACS and viewing video-recorded facial behavior at
frame rate and slow motion, coders can manually code nearly all possible facial
expressions, which are decomposed into action units (AUs). Action units, with some
qualifications, are the smallest visually discriminable facial movements.

A major challenge in use of FACS and other detailed systems for annotating
facial expression is the extensive time required in training and use. Training and
passing the certification test for FACS can take six months, and additional training

is required before coders are prepared to use FACS to annotate observational data
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on their own. FACS is labor intensive, requiring up to 1 hour to code a single
minute of video (Cohn & Ekman, 2005). Undoubtedly, the exhaustive nature of
FACS creates an obstacle to its widespread use.

Not surprisingly, there has been great interest in developing computer-based
approaches to facial expression analysis that would permit FACS coding without the
time-consuming aspects of doing so manually. If successful, these approaches would
greatly improve the efficiency and reliability of facial expression analysis, and more
importantly, make its use feasible in applied settings in addition to research. Current
methods of assessing psychopathology, for instance, depend almost entirely on verbal
report (clinical interviews or questionnaires) of patients, their families, or caregivers.
They lack systematic and efficient ways of incorporating behavioral observations that
may be strong indicators of psychological disorder. Automated FACS coding could make
it possible to use this important source of information.

While the advantages of automated coding are apparent, the challenges to
developing such systems are considerable. The face and facial features must be detected
in video, shape or appearance information must be extracted and then normalized for
variation in pose, illumination, and individual differences in face shape and texture, and
then used to segment and classify facial actions. While human observers easily
accommodate changes in pose, scale, illumination, occlusion, and individual differences,
these and other sources of variation represent considerable challenges for a computer
vision system. Then there is the machine-learning challenge of automatically detecting
actions that require significant training and expertise even for human coders.

In the past decade, there has been significant effort to develop computer-vision

based approaches to automatic coding of facial expression. Early work focused on posed
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facial expressions with frontal camera orientation, little or no head motion or occlusion,
and moderate to strong expressions (Bartlett, Ekman, Hager, & Sejnowski, 1999; Cohn,
Zlochower, Lien, & Kanade, 1999; Essa & Pentland, 1997; Pantic & Rothkrantz, 2000).
Tian, Kanade, and Cohn (2001), for example, automatically detected 34 action units
and action unit combinations in full-face frontal view images. More recently,
investigators have made progress in the more demanding task of action unit detection in
non-posed facial images. Valstar, Gunes, and Pantic (2007) and Cohn and Schmidt
(2004) automatically discriminated posed from non-posed, naturally occurring smiles.
Ambadar, Cohn, and Reed (2009) used computer-vision based measures to
differentiate polite, happy, and embarrassed smiles. Metaxas and colleagues detected
stress from automatic measures of facial expression (Dinges, et al., 2005). At least two
groups have discriminated facial expressions or episodes of physical pain under
relatively constrained conditions (Ashraf, et al., 2009; Littlewort, Bartlett, Fasel,
Susskind, & Movellan, 2006). Messinger and colleagues (Messinger, Mahoor, Chow, &
Cohn, 2009) demonstrated a pilot system for automatic measurement of smiles in
mothers and infants during face-to-face interaction. Whitehill and colleagues (Whitehill,
Littlewort, Fasel, Bartlett, & Movellan, 2009) detected smile intensity in video from five
subjects while they individually watched a short video clip. At least one commercial
product (Theuws, Undated) has been released that attempts to identify emotion
expressions from frontal video with little or no head motion or occlusion. In each of
these studies, faces were recorded from frontal or near-frontal views, and behavior
samples were obtained during relatively structured tasks such as computer viewing,

sitting in front of a computer display or camera, and structured face-to-face interaction.
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The pending challenge is to demonstrate the ability of automatic methods to reliably
detect non-posed facial actions in less constrained contexts. We used automated facial
image analysis to provide the first test of automated FACS action unit detection in a
multi-person group of strangers interacting in a relatively unstructured context.

None of the participants were associated with the experiment as experimenters or
confederates, and thus the facial movements were spontaneous and unscripted. Because
participants were seated around a circular table, we anticipated that the video would
include moderate to large head rotation as they turned toward and away from each
other. We also anticipated frequent occlusion, as subjects frequently drank beverages (a
glass of juice) supplied by the experimenters.

The present test focused on a critical pair of AUs (AU 6 and 12). AU 12 is caused by
contraction of the zygomatic major muscle, which pulls the lip corners obliquely. AU 6
is caused by contraction of the orbicularis oculi muscle, which raises the cheeks and
causes crow-feet wrinkles to form lateral to the outer eye corners. When these actions
occur together they comprise what Ekman (Ekman, et al., 1990) termed the “Duchenne
smile.” This smile is thought to be a “true” smile and reflect happiness.

Smiles are the most frequent of all emotion expressions, occurring as often as three
or more times per minute during social interaction (Schmidt & Cohn, 2001). They are
one of a small number of expressions for which there is evidence of universality (Ekman,
1993). And in circumplex models of emotion (Larsen & Diener, 1992), they indicate
positive valence (Cacioppo, Petty, Losch, & Kim, 1986). To demonstrate that this
expression can be automatically coded in a reliable fashion during relatively
unstructured, multi-person social interaction would mark an important step forward in

the development of automatic approaches to coding facial expression.
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Method

Digital video from three subjects who were participating in a larger study was
used for the present test. These subjects were involved in a study (in progress)
examining group formation processes [see (Kirchner, Sayette, Cohn, Moreland, &
Levine, 2006) for details of a prior study using this design.] Although the experiment
was advertised as a study examining the impact of alcohol on cognitive functioning, the
group of subjects used in the present FACS analyses had been randomly assigned to a
no-alcohol control condition in which they were explicitly told, and indeed provided,
with cranberry juice only. They drank juice throughout the observation period. All three
individuals reported that they had not consumed alcohol or other psychoactive drugs
(except nicotine or caffeine) during the 24-hour period leading up the observations and
(all reported a 0 on a 101 point intoxication scale during the experiment.)
Observational procedures

On arrival, participants’ height and weight were recorded. They also ate a light,
weight-adjusted snack (a bagel with butter) and completed a consent form describing
the study. To ensure that the group was composed of three unacquainted “strangers,”
four people were invited to the laboratory (see Kirchner et al., 2006 for details of the
overall procedures for a similar study.) Participants were told there was a slight chance
that they might be asked to return on another day, in which case they would receive an
extra $20. Participants were greeted separately and placed in different rooms. Then
they were casually introduced to each other one at a time while being observed by two
researchers for any signs of recognition. None showed any sign of recognition.
Following initial greetings, they also were asked if they had ever met the others (and

they reported that they had not ever met).
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Setting and equipment. The three members of the group were escorted to the
experimental room and seated equidistant from each other around a circular (75-cm
diameter) table. They were asked to consume a control beverage consisting entirely of
cranberry juice before engaging in a variety of cognitive tasks over a 36-min period.
Separate wall-mounted cameras faced each person. It was explained that the cameras
were focused on their drinks and would be used to monitor their consumption rate from
the adjoining room. Following the drink and the cognitive tasks, subjects were
debriefed, paid, and permitted to leave.

The laboratory included a custom-designed video control system that permits
synchronized video output for each subject, as well as an overhead shot of the group and
a quad-split image showing both the individual and group views (Figure 1). The
individual view for each subject was used in this report. An example is shown below.

Insert Figure 1 about Here
Manual FACS coding

For each participant, six minutes of continuous video from the middle of the
observation period was selected for analysis. Two certified FACS coders independently
coded action units 6 and 12 and instances of occlusion from the digital video using
Observer Video-Pro Software (Noldus, Trienes, Henriksen, Jansen, & Jansen, 2000).
Occlusion was defined as any obstruction of part of the face by a hand, glass, or other
object, or a portion of face moving out of the field of view. Self-occlusion, caused by
non-rigid head motion, was not coded but was taken into account as described in the
following paragraph. The Observer system makes it possible to manually code digital
video in stop-frame and at variable speed and later synchronize codes according to

digital time stamp. Inter-observer exact (30f/s) agreement was quantified using
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coefficient kappa, which is the proportion of agreement above what would be expected
to occur by chance. Kappa coefficients were 0.68 and 0.78 for AU 6 and AU 12,
respectively, and 0.94 for occlusion.

Orientation to the camera was quantified automatically using a non-rigid
structure from motion algorithm as noted above. Head orientation is important because
the face looks different from different views and parts of the face may become self-
occluded. We evaluated AU detection in relation to variation in pitch (the head rotating
up or down, as in head nods) and yaw (the head rotating to the left or right, as in head
turns).

Automatic facial image analysis

Automatic facial image analysis included three steps. These were 1) extract the
face shape and appearance using an Active Appearance Model (AAM) (Matthews &
Baker, 2004); 2) normalize shape and appearance to control for variation due to rigid
head motion (e.g., turning toward or away from other participants); 3) detect FACS
action units.

Active Appearance Model. AAMs decouple shape and appearance of a face
image. Given a pre-defined linear shape model with linear appearance variation, AAMs
align the shape model to an unseen image containing the face and facial expression of
interest. To train an AAM for each participant, approximately 3% of keyframes were
manually labeled during a training phase. The remaining frames were automatically
aligned using a gradient-descent AAM fit described in (Matthews & Baker, 2004; Xiao,
Baker, Matthews, & Kanade, 2004).

Insert Figure 2 about Here

The shape s of an AAM is described by a 2D triangulated mesh. In particular, the
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coordinates of the mesh vertices define the shape s (Ashraf, et al., 2009). These vertex
locations correspond to a source appearance image, from which the shape is aligned.

Since AAMs allow linear shape variation, the shape s can be expressed as a base shape

s, plus a linear combination of m shape vectors s, :

m
S=8§,+ Episi
=

where the coefficients p=(p,,...,p,)" are the shape parameters (See Figure 2).
Additionally, a global normalizing transformation (in this case, a geometric similarity
transform) is applied to s to remove variation due to rigid motion (i.e. translation,
rotation, and scale). The parameters p, are the residual parameters representing
variations associated with the actual object shape (e.g., mouth opening and eye closing).
Given a set of training shapes, Procrustes alignment is employed to normalize these

shapes and estimate the base shape s,, and Principal Component Analysis (PCA) is then
used to obtain the shape and appearance basis eigenvectors s, (Matthews & Baker,

2004). A non-rigid structure from motion algorithm is used to estimate head pose
parameters (e.g., pitch and yaw)(Matthews, Xiao, & Baker, 2007; Xiao, et al., 2004).
Because AAMs are invertible, they can be used both for analysis, as in the current study,
and for synthesizing new images (Theobald & Cohn, 2009).

AAM features. Although person-specifc AAM models were used for tracking, a
global model of the shape variation across all sessions was built to obtain the shape

basis vectors and corresponding similarity normalized coefficients p,. A model

common to all subjects is necessary to ensure that the meaning of each of the
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coefficients is comparable across sessions. 95% of the energy was retained in the PCA
dimensionality reduction step, resulting in 10 principal components or shape
eigenvectors.

Action unit detection

Action units were detected using support vector machine classifiers (SVM) (Hsu,
Chang, & Lin, 2005). SVMs attempt to find the hyper-plane that maximizes the margin
between positive and negative observations for a specified class. For AAM shape and
appearance coefficients, they seek to maximize the boundary between each action unit
(e.g., AU 6) and all instances of other action units including neutral faces (i.e., AU 0 in

FACS).

To maximize generalizability, we trained and tested the SVMs on independent
data. For training, we use used the RU-FACS (Frank, Movellan, Bartlett, & Littlewort,
Undated) image database. RU-FACS consists of digitized video and manual FACS
coding of 34 young adults. They were recorded during an interview of approximately 2
minutes duration in which they lied or told the truth in response to an interviewer’s
questions. Pose orientation was mostly frontal with small out-of-plane head motion.
Image data from five subjects could not be analyzed due to image artifact. Thus, image
data from 29 subjects was used for training the classifiers. Classifiers then were tested

on the independent subjects from the current study.
Results

Descriptive statistics
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AU 6 and AU 12 occurred 7% and 32% of the time, respectively. With the
exception of only four video frames, AU 6 always occurred in the presence of AU 12.

Thus, AU 6 was a reliable signal of Duchenne smiling.

Occlusion, defined as partial obstruction of the view of the face, occurred in
10.9% of video frames. Head orientation was variable. Mean orientation was 6.78
degrees from frontal view for pitch and 6.79 degrees from frontal view for yaw. (Here
and following, absolute values are reported for pitch and yaw). For pitch, the goth and
95th percentiles were 12.85 and 15.54 degrees from frontal, respectively. For yaw, the
corresponding values were 12.53 and 15.86 degrees. Maximum pitch was 28.82 degrees;

maximum yaw was 73.37 degrees.
Automatic action unit detection

We compared automatic and manual FACS coding of the three 6-min video
streams of naturally occurring facial expression during the social interaction. The video
included out-of-plane head motion (pitch and yaw) and partial occlusion, which are
challenging for automatic coding. Figure 3 shows an example of the face tracking. (For
video demo, please see supplemental materials). The face image with tracked facial
features appears in the bottom panel. Across the top are the similarity transformed and
piece-wise warped appearance. The former is appearance after removing rotation and
translation; translation is variation due to change in horizontal and vertical motion and
scale. In piece-wise normalized appearance, variation due to out-of-plane head motion
has been removed and thus stabilized for all but non-rigid motion (i.e. expression). To
the right of the appearance are three representations of shape. The first is 2D, the

second is 3D when viewed from a 34 of frontal pose, and the third is 3D viewed from
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above the face. By stabilizing the face image and estimating change in rigid head
motion, potential confounds in AU detection due to rigid head motion are removed.
Also, head motion may itself be an important nonverbal cue, and thus useful in its own

right to measure.
Insert Figure 3 about Here

As noted above, classifiers were trained on video from an independent database
(RU-FACS) and tested on the subjects from the experiment in progress. Automatically
coded AU 6 and AU 12 for the current video then were compared on a frame-by-frame
basis with manual FACS coding. Following previous literature (Ashraf, et al., 20009;
Pantic & Bartlett, 2007), we quantified accuracy using receiver operator characteristics
curves (ROC). ROC curves illustrate the relation between true and false positive rates of
classifiers as the decision threshold varies. Area under the curve (A’) can vary from o to

1.00, with 0.50 representing the expected value of random guessing.

ROC curves are widely used in signal detection, analysis of diagnostic systems,
and machine learning (Fawcett, 2005). They are especially useful for skewed

distributions, such as those for action units, and unequal classification costs.
True positive rate (TPR), also known as “sensitivity” or “recall,” is defined as:
TPR =TP /(TP + FN)

where TP is “true positive” and FN is “false negative.” False positive rate (FPR), also

known as “false alarm rate” or “1 — Sensitivity” is defined as:
FPR = FP / (FP + TN)

where FP is “false positive” and TN is “true negative.”
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We first report results for the entire video. We then report results in relation to

occlusion and non-rigid head-motion.
Insert Figures 4

Concurrent validity for the entire video. Concurrent validity was high for both
AU 6 and AU 12 (Figure 4). For AU 6, A’was .96 (standard error = .002, p < .0001); for
AU 12, A’was .88 (standard error = .004, p <,0001). For comparison with inter-
observer agreement, A’to measure false positive rates corresponding to 90% and 80%
true positive rates. A hit rate of 70% is required to pass the FACS certification test; hit
rates of 70% or above are common in research that uses FACS (Ekman & Rosenberg,

2005).
Insert Table 1 about Here

For AU 6, false positive rates were well within acceptable limits even when true
positive rate was set to 90% (Table 1). For AU 12, an 80% true positive rate yielded an

acceptable false positive rate.

Concurrent validity as a function of occlusion and non-rigid head motion. To
assess the influences of occlusion on AU detection, we computed ROC curves separately
for video with and without occlusion. For AU 6, occlusion reduced A’ from .97 to .91.

For AU 12, occlusion reduced A’ from .90 to .75.

To assess robustness to pitch and yaw, we computed ROC curves separately for
every 5 degrees of pitch and yaw variation. AU 6 occurred through 20 degrees pitch and

all intervals of yaw (Table 2). AU 12 occurred across the full range for both pitch and



Automated Facial Coding p. 15

yaw. Most variation in both pitch and yaw variation was within intervals between + 0 to

20 degrees; results for intervals outside of this range should be interpreted with caution.

With respect to pitch, A’for AU 6 was stable (mean = .96) through +15 degrees
pitch and decreased to .89 at +15 to 20 degrees pitch (Table 2). For AU 12, A’was stable
through 20 degrees pitch (mean = .88) and then decreased to .70 over the interval
between +20 to 25 degrees pitch. For pitch variation greater than +25 degrees, there

was an uptick for AU 12.

With respect to yaw, AU 6 was stable (mean = .97) through +20 degrees and then
decreased to .89 and .83 at +20-to-25 and +25 degrees or greater. For AU 12, A’was
stable (mean = .90) through +15 degrees yaw and then decreased gradually to .78 at yaw
greater than +25 degrees. Overall, the general pattern for both AU 6 and AU 12 for
pitch and yaw was for A’to remain high for intervals through +15 or 20 degrees and then
to decrease. For no intervals did A’go below .70, and in all but one case was .78 or

higher.
Insert Table 2 about Here
Discussion

This study provides initial support for the use of automatic facial image analysis
for the detection of emotion expression to detect spontaneous facial expressions arising
during unstructured social interaction. Specifically, using automated facial image
analysis, two action units critical to positive emotion, AUs 6 and 12, were automatically
detected with high reliability as compared with two independent certified FACS coders.

For AU 6, setting true positive rate as high as 90% resulted in only a small error rate of
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6%. For AU 12, setting a true positive rate of 80% resulted in an acceptable error rate of
15%. These values may actually underestimate the effective reliability of automatic
coding. That is because they are based on exact agreement. Most users of FACS, and
many similar coding systems, estimate agreement within a precision window of
plus/minus 0.5 to 1 second (Sayette, Cohn, Wertz, Perrott, & Parrott, 2001), which
would effectively increase intersystem agreement.

When hits and misses were reviewed in the video, it appeared that many false
positives occurred with talking or were confusions with talking. Talking has always been
a challenge to manual FACS coding. Guidelines for manual FACS coding were initially
to code “Talk” (AU 50) in place of other action units in the mouth region when present.
While this instruction often proves too costly in lost information, criteria for coding
action units in the presence of talking remain lacking. For an automatic system, it may
be helpful to code talking on a continuous time base and to include that in training AU
12 detectors.

Partial occlusion was relatively common, occurring in about 11% of video frames.
Face touching, holding a drink in front of or touching the face, and the face moving out
of view were frequent causes. Had drinking not been part of the experimental protocol,
partial occlusion may have occurred less frequently. Nevertheless, partial occlusion had
minimal effect on accuracy for AU 6, perhaps because face touches and drinking were
more likely to occlude only the lower face. For AU 12, area under the ROC curve
decreased by about 13% when occlusion occurred. The effects of occlusion were not
uniform, but varied with AU.

Accuracy of action detection was stable within a range of about +15 to 20 degrees.

Beyond that, accuracy decreased, although still remaining within acceptable limits. The
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findings with respect to larger values of pitch and yaw must be considered with caution,
in that head orientation at higher ranges was relatively uncommon. With that caveat,
the findings suggest that automatic facial image analysis is capable of performing well
within a much larger range of pitch and yaw than has been demonstrated previously.
Indeed, this is the first study to report AU detection results in relation to parametric
variation in pitch and yaw. The findings provide initial evidence that automatic facial
image analysis can perform well within the range of head orientation that is likely to
occur in unscripted, spontaneous facial behavior in a social setting.

Future research with larger data sets is needed to replicate and extend these
preliminary findings. Many factors may potentially influence system accuracy. The
influence of skin color, glasses, facial jewelry, and lighting will require careful
evaluation. The face models appear robust to differences in ethnic or racial background
but dark skin may require attention to illumination. With respect to glasses, in our
experience glasses only interfere with tracking when the lenses are highly reflective.
When that occurs, eye closure may be difficult to detect. In the current study, all
participants were men; it is possible that results could have differed for women,
although that seems unlikely. While men have more facial texture in the lower face,
which could contribute to extraction of appearance features, sex differences have not
emerged in previous research using posed facial behavior. Also, in so far as women are
more expressive or smile more than men (e.g.,LaFrance, Hecht, & Paluck, 2003), their
facial expression in naturally occurring behavior should be more easily detected. With
respect to pose and occlusion, we found that AU detection was relatively robust. Future
work will want to examine these issues and include a larger number of action units and

emotions.



Automated Facial Coding p. 18

Despite the limitations of the current study, this initial demonstration of the
efficacy of automated facial image analysis suggests that deployment of automated facial
image analysis in behavioral research may be close at hand. Initial efforts have used
automated facial image analysis to study pain (Ashraf, et al., 2009; Cohn, Lucey, et al.,
20009; Littlewort, Bartlett, & Lee, in press, 2009), smiling (Ambadar, et al., 2009; Cohn
& Schmidt, 2004; Schmidt, Lui, & Cohn, 2006), and measurement of depression
severity (Cohn, Simon Kreuz, et al., 2009; Wang, et al., 2008) over relatively brief
periods under more controlled conditions. The current paper is the first to use
automated facial image analysis in relatively unconstrained small-group interactions
over relatively long spans of many minutes. In this expanded use, we found that
automated facial image analysis had high concurrent validity with manual FACS coding.
Automated facial image analysis appears on the verge of impacting a wide range of
clinical and research applications. For the first time, precise and valid measurement will
be possible without reliance on laborious training and coding. Efficiencies of scale,
including real-time applications (Ryan, Cohn, & Hamerski, 2009), are about to
significantly boost research productivity and open new areas of investigation.
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Table 1

Selected corresponding true- and false positive rates for AU 6 and AU 12.

Action Unit True Positive Rate False Positive Rate
AU6 90% 6%

80% 3%
AU 12 90% 37%

80% 15%
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Table 2

Area under the ROC curve in relation to partial occlusion, pitch, and yaw.

Percentage of time Area under the ROC
AU6 AU 12

Occlusion

Absent 89.22 .97 (.002) .90 (.002)
Present 10.78 .91 (.012) .75 (.012)
Pitch (absolute value)

0 to 5 degrees 41.08 .96 (.004) .86 (.004)

5 to 10 degrees 36.58 .97 (.004) .90 (.003)
10 to 15 degrees 16.81 .96 (.006) .90 (.005)
15 to 20 degrees 4.50 .89 (.061) .87 (.020)
20 to 25 degrees 71 NA .70 (.037)
> 25 degrees .32 NA .94 (.027)
Yaw (absolute value)

0 to 5 degrees 42.85 .96 (.004) .87 (.004)

5 to 10 degrees 34.75 .97 (.004) .91 (.004)
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10 to 15 degrees 16.69 .97 (.004) .91 (.005)
15 to 20 degrees 3.37 .98 (.004) .84 (.013)
20 to 25 degrees 1.10 .89 (.036) .80 (.038)
> 25 degrees 1.23 .83 (.064) .78 (.030)

Note. All p < .0001.

NA = No occurrences of the AU for this range.
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Figure legends

Figure 1. An example of the image capture. Separate wall-mounted cameras were
directed at each participant. A ceiling-mounted camera recorded an overview. Face
meshes from the AAM are superimposed on the source video.

Figure 2. An example of the computation of AAM shape and appearance. The figure
shows the mean and first two modes of variation of 2D AAM shape (a—c) and
appearance (d—f) variation and the mean and first two modes of 3D AAM shape. From
Xiao, Baker, Matthews, & Kanade (2004). © IEEE.

Figure 3. Screen shot of automated face tracking and AU detection. Row 2 shows a
subject’s tracked face and frame-by-frame detection results for AU 6 and AU 12. Row 1
column A shows corresponding 2D face appearance normalized for head translation,
scale, and rotation. Row 1 column B shows the appearance after normalizing for pitch
(e.g., head nodding) and yaw (e.g., head turning). Row 1 columns C through E show 2D
and 3D representations of the corresponding face shapes. Row 1 column F shows the
estimated 3D parameters (pitch, roll, and yaw). Please see Supplementary Materials for
video examples (The video examples also are available at

http://www.pitt.edu/~jeffcohn/D102 G006A1 trim.mov

and http://www.pitt.edu/~jeffcohn/D102 G014A1 trim.mov).

Figure 4. The receiver operating characteristics (ROC) curves for AU 6 and AU 12 in
comparison with random guessing (depicted by the diagonal lines). The corresponding
areas under the ROC were 0.94 (standard error = .002, p < .0001) and 0.85 (standard

error = .004, p < .0001).
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