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Spontaneous facial expression in a small group can be automatically measured:  

An initial demonstration 

Manual measurement of facial expression is labor intensive and difficult to standardize.  

Automated measurement seeks to address the need for valid, efficient, and reproducible 

measurement.  Recent systems have shown promise in posed behavior and in structured 

contexts. Can automated measurement perform in more natural, less constrained 

settings? Previously unacquainted young adults sat around a circular table for 30 

minutes of conversation.  Video was selected for manual and automatic coding of Facial 

Action Coding System action units 6 (cheek raise) and 12 (lip corner pull), which 

together signal enjoyment.  Moderate out-of-plane head motion and occlusion, which 

are challenging for automatic processing, were both common, as participants turned 

toward and away from each other or consumed drinks. Concurrent validity for both 

action units was high.  This is the first study to find that automated measurement of 

facial action in relatively unconstrained contexts can achieve results comparable to that 

of manual coding.    
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Facial expression has been a focus of emotion research for over a hundred years 

(Darwin, 1872/1998). It is central to several leading theories of emotion (Ekman, 1992; 

Izard, 1977; Tomkins, 1962) and has been the focus of at times heated debate about 

issues in emotion science  (Ekman, 1994; Fridlund, 1994; Russell, 1994). Facial 

expression figures prominently in research on almost every aspect of emotion, including 

psychophysiology (Levenson, Ekman, & Friesen, 1990), neural correlates (Ekman, 

Davidson, & Friesen, 1990), development (Malatesta, Culver, Tesman, & Shephard, 

1989) perception (Ambadar, Schooler, & Cohn, 2005), addiction (Griffin & Sayette, 

2008), social processes (Hatfield, Cacioppo, & Rapson, 1992), depression (Reed, 

Sayette, & Cohn, 2007) and other emotion disorders (Tremeau, et al., 2005), to name a 

few. 

Because of its importance to the study of emotion, a number of observer-based 

systems of facial expression measurement have been developed (Cohn & Ekman, 2005). 

Of these various systems, the Facial Action Coding System (FACS) (Ekman, Friesen, & 

Hager, 2002) is the most comprehensive, psychometrically rigorous, and widely used 

(Ekman & Rosenberg, 2005). Using FACS and viewing video-recorded facial behavior at 

frame rate and slow motion, coders can manually code nearly all possible facial 

expressions, which are decomposed into action units (AUs). Action units, with some 

qualifications, are the smallest visually discriminable facial movements.  

A major challenge in use of FACS and other detailed systems for annotating 

facial expression is the extensive time required in training and use.  Training and 

passing the certification test for FACS can take six months, and additional training 

is required before coders are prepared to use FACS to annotate observational data 
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on their own.  FACS is labor intensive, requiring up to 1 hour to code a single 

minute of video (Cohn & Ekman, 2005).  Undoubtedly, the exhaustive nature of 

FACS creates an obstacle to its widespread use. 

Not surprisingly, there has been great interest in developing computer-based 

approaches to facial expression analysis that would permit FACS coding without the 

time-consuming aspects of doing so manually.  If successful, these approaches would 

greatly improve the efficiency and reliability of facial expression analysis, and more 

importantly, make its use feasible in applied settings in addition to research. Current 

methods of assessing psychopathology, for instance, depend almost entirely on verbal 

report (clinical interviews or questionnaires) of patients, their families, or caregivers. 

They lack systematic and efficient ways of incorporating behavioral observations that 

may be strong indicators of psychological disorder. Automated FACS coding could make 

it possible to use this important source of information. 

While the advantages of automated coding are apparent, the challenges to 

developing such systems are considerable.  The face and facial features must be detected 

in video, shape or appearance information must be extracted and then normalized for 

variation in pose, illumination, and individual differences in face shape and texture, and 

then used to segment and classify facial actions. While human observers easily 

accommodate changes in pose, scale, illumination, occlusion, and individual differences, 

these and other sources of variation represent considerable challenges for a computer 

vision system.  Then there is the machine-learning challenge of automatically detecting 

actions that require significant training and expertise even for human coders.  

In the past decade, there has been significant effort to develop computer-vision 

based approaches to automatic coding of facial expression.  Early work focused on posed 



Automated Facial Coding p. 5 
 

facial expressions with frontal camera orientation, little or no head motion or occlusion, 

and moderate to strong expressions (Bartlett, Ekman, Hager, & Sejnowski, 1999; Cohn, 

Zlochower, Lien, & Kanade, 1999; Essa & Pentland, 1997; Pantic & Rothkrantz, 2000).    

Tian, Kanade, and Cohn   (2001), for example, automatically detected 34 action units 

and action unit combinations in full-face frontal view images.  More recently, 

investigators have made progress in the more demanding task of action unit detection in 

non-posed facial images. Valstar, Gunes, and Pantic (2007) and Cohn and Schmidt 

(2004) automatically discriminated posed from non-posed, naturally occurring smiles.  

Ambadar, Cohn, and Reed  (2009) used computer-vision based measures to 

differentiate polite, happy, and embarrassed smiles. Metaxas and colleagues detected 

stress from automatic measures of facial expression (Dinges, et al., 2005).  At least two 

groups have discriminated facial expressions or episodes of physical pain under 

relatively constrained conditions (Ashraf, et al., 2009; Littlewort, Bartlett, Fasel, 

Susskind, & Movellan, 2006).  Messinger and colleagues (Messinger, Mahoor, Chow, & 

Cohn, 2009) demonstrated a pilot system for automatic measurement of smiles in 

mothers and infants during face-to-face interaction. Whitehill and colleagues (Whitehill, 

Littlewort, Fasel, Bartlett, & Movellan, 2009) detected smile intensity in video from five 

subjects while they individually watched a short video clip. At least one commercial 

product (Theuws, Undated) has been released that attempts to identify emotion 

expressions from frontal video with little or no head motion or occlusion.   In each of 

these studies, faces were recorded from frontal or near-frontal views, and behavior 

samples were obtained during relatively structured tasks such as computer viewing, 

sitting in front of a computer display or camera, and structured face-to-face interaction.  
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The pending challenge is to demonstrate the ability of automatic methods to reliably 

detect non-posed facial actions in less constrained contexts.  We used automated facial 

image analysis to provide the first test of automated FACS action unit detection in a 

multi-person group of strangers interacting in a relatively unstructured context.   

None of the participants were associated with the experiment as experimenters or 

confederates, and thus the facial movements were spontaneous and unscripted. Because 

participants were seated around a circular table, we anticipated that the video would 

include moderate to large head rotation as they turned toward and away from each 

other.  We also anticipated frequent occlusion, as subjects frequently drank beverages (a 

glass of juice) supplied by the experimenters.    

The present test focused on a critical pair of AUs (AU 6 and 12).  AU 12 is caused by 

contraction of the zygomatic major muscle, which pulls the lip corners obliquely. AU 6 

is caused by contraction of the orbicularis oculi muscle, which raises the cheeks and 

causes crow-feet wrinkles to form lateral to the outer eye corners.  When these actions 

occur together they comprise what Ekman  (Ekman, et al., 1990) termed the “Duchenne 

smile.”  This smile is thought to be a “true” smile and reflect happiness.   

Smiles are the most frequent of all emotion expressions, occurring as often as three 

or more times per minute during social interaction (Schmidt & Cohn, 2001).  They are 

one of a small number of expressions for which there is evidence of universality (Ekman, 

1993). And in circumplex models of emotion (Larsen & Diener, 1992), they indicate 

positive valence (Cacioppo, Petty, Losch, & Kim, 1986). To demonstrate that this 

expression can be automatically coded in a reliable fashion during relatively 

unstructured, multi-person social interaction would mark an important step forward in 

the development of automatic approaches to coding facial expression. 
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Method 

Digital video from three subjects who were participating in a larger study was 

used for the present test. These subjects were involved in a study (in progress) 

examining group formation processes [see (Kirchner, Sayette, Cohn, Moreland, & 

Levine, 2006) for details of a prior study using this design.] Although the experiment 

was advertised as a study examining the impact of alcohol on cognitive functioning, the 

group of subjects used in the present FACS analyses had been randomly assigned to a 

no-alcohol control condition in which they were explicitly told, and indeed provided, 

with cranberry juice only.  They drank juice throughout the observation period. All three 

individuals reported that they had not consumed alcohol or other psychoactive drugs 

(except nicotine or caffeine) during the 24-hour period leading up the observations and 

(all reported a 0 on a 101 point intoxication scale during the experiment.) 

Observational procedures 

On arrival, participants’ height and weight were recorded. They also ate a light, 

weight-adjusted snack (a bagel with butter) and completed a consent form describing 

the study.  To ensure that the group was composed of three unacquainted “strangers,” 

four people were invited to the laboratory (see Kirchner et al., 2006 for details of the 

overall procedures for a similar study.) Participants were told there was a slight chance 

that they might be asked to return on another day, in which case they would receive an 

extra $20.  Participants were greeted separately and placed in different rooms. Then 

they were casually introduced to each other one at a time while being observed by two 

researchers for any signs of recognition.  None showed any sign of recognition.  

Following initial greetings, they also were asked if they had ever met the others (and 

they reported that they had not ever met).  
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Setting and equipment. The three members of the group were escorted to the 

experimental room and seated equidistant from each other around a circular (75-cm 

diameter) table.   They were asked to consume a control beverage consisting entirely of 

cranberry juice before engaging in a variety of cognitive tasks over a 36-min period.  

Separate wall-mounted cameras faced each person. It was explained that the cameras 

were focused on their drinks and would be used to monitor their consumption rate from 

the adjoining room.  Following the drink and the cognitive tasks, subjects were 

debriefed, paid, and permitted to leave.  

The laboratory included a custom-designed video control system that permits 

synchronized video output for each subject, as well as an overhead shot of the group and 

a quad-split image showing both the individual and group views (Figure 1). The 

individual view for each subject was used in this report.  An example is shown below. 

Insert Figure 1 about Here 

Manual FACS coding 

For each participant, six minutes of continuous video from the middle of the 

observation period was selected for analysis.  Two certified FACS coders independently 

coded action units 6 and 12 and instances of occlusion from the digital video using 

Observer Video-Pro Software (Noldus, Trienes, Henriksen, Jansen, & Jansen, 2000).  

Occlusion was defined as any obstruction of part of the face by a hand, glass, or other 

object, or a portion of face moving out of the field of view.  Self-occlusion, caused by 

non-rigid head motion, was not coded but was taken into account as described in the 

following paragraph. The Observer system makes it possible to manually code digital 

video in stop-frame and at variable speed and later synchronize codes according to 

digital time stamp. Inter-observer exact (30f/s) agreement was quantified using 
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coefficient kappa, which is the proportion of agreement above what would be expected 

to occur by chance.  Kappa coefficients were 0.68 and 0.78 for AU 6 and AU 12, 

respectively, and 0.94 for occlusion.  

Orientation to the camera was quantified automatically using a non-rigid 

structure from motion algorithm as noted above. Head orientation is important because 

the face looks different from different views and parts of the face may become self-

occluded.  We evaluated AU detection in relation to variation in pitch (the head rotating 

up or down, as in head nods) and yaw (the head rotating to the left or right, as in head 

turns).  

Automatic facial image analysis 

Automatic facial image analysis included three steps. These were 1) extract the 

face shape and appearance using an Active Appearance Model (AAM) (Matthews & 

Baker, 2004); 2) normalize shape and appearance to control for variation due to rigid 

head motion (e.g., turning toward or away from other participants); 3) detect FACS 

action units. 

Active Appearance Model.  AAMs decouple shape and appearance of a face 

image. Given a pre-defined linear shape model with linear appearance variation, AAMs 

align the shape model to an unseen image containing the face and facial expression of 

interest. To train an AAM for each participant, approximately 3% of keyframes were 

manually labeled during a training phase. The remaining frames were automatically 

aligned using a gradient-descent AAM fit described in (Matthews & Baker, 2004; Xiao, 

Baker, Matthews, & Kanade, 2004). 

Insert Figure 2 about Here 

   The shape  of an AAM is described by a 2D triangulated mesh. In particular, the 
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coordinates of the mesh vertices define the shape (Ashraf, et al., 2009). These vertex 

locations correspond to a source appearance image, from which the shape is aligned. 

Since AAMs allow linear shape variation, the shape  can be expressed as a base shape 

 plus a linear combination of  shape vectors :  

           

      

where the coefficients  are the shape parameters (See Figure 2). 

Additionally, a global normalizing transformation (in this case, a geometric similarity 

transform) is applied to   to remove variation due to rigid motion (i.e. translation, 

rotation, and scale). The parameters  are the residual parameters representing 

variations associated with the actual object shape (e.g., mouth opening and eye closing).  

Given a set of training shapes, Procrustes alignment is employed to normalize these 

shapes and estimate the base shape , and Principal Component Analysis (PCA) is then 

used to obtain the shape  and appearance basis eigenvectors (Matthews & Baker, 

2004).  A non-rigid structure from motion algorithm is used to estimate head pose 

parameters (e.g., pitch and yaw)(Matthews, Xiao, & Baker, 2007; Xiao, et al., 2004).  

Because AAMs are invertible, they can be used both for analysis, as in the current study, 

and for synthesizing new images (Theobald & Cohn, 2009). 

AAM features.  Although person-specifc AAM models were used for tracking, a 

global model of the shape variation across all sessions was built to obtain the shape 

basis vectors and corresponding similarity normalized coefficients .  A model 

common to all subjects is necessary to ensure that the meaning of each of the 



Automated Facial Coding p. 11 
 

coefficients is comparable across sessions. 95% of the energy was retained in the PCA 

dimensionality reduction step, resulting in 10 principal components or shape 

eigenvectors. 

Action unit detection 

Action units were detected using support vector machine classifiers (SVM) (Hsu, 

Chang, & Lin, 2005). SVMs attempt to find the hyper-plane that maximizes the margin 

between positive and negative observations for a specified class. For AAM shape and 

appearance coefficients, they seek to maximize the boundary between each action unit 

(e.g., AU 6) and all instances of other action units including neutral faces (i.e., AU 0 in 

FACS).    

To maximize generalizability, we trained and tested the SVMs on independent 

data.  For training, we use used the RU-FACS (Frank, Movellan, Bartlett, & Littlewort, 

Undated) image database.  RU-FACS consists of digitized video and manual FACS 

coding of 34 young adults. They were recorded during an interview of approximately 2 

minutes duration in which they lied or told the truth in response to an interviewer’s 

questions.  Pose orientation was mostly frontal with small out-of-plane head motion.  

Image data from five subjects could not be analyzed due to image artifact.  Thus, image 

data from 29 subjects was used for training the classifiers.  Classifiers then were tested 

on the independent subjects from the current study. 

Results  

Descriptive statistics 
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AU 6 and AU 12 occurred 7% and 32% of the time, respectively.  With the 

exception of only four video frames, AU 6 always occurred in the presence of AU 12.  

Thus, AU 6 was a reliable signal of Duchenne smiling.  

Occlusion, defined as partial obstruction of the view of the face, occurred in 

10.9% of video frames.  Head orientation was variable. Mean orientation was 6.78 

degrees from frontal view for pitch and 6.79 degrees from frontal view for yaw. (Here 

and following, absolute values are reported for pitch and yaw).  For pitch, the 90th and 

95th percentiles were 12.85 and 15.54 degrees from frontal, respectively. For yaw, the 

corresponding values were 12.53 and 15.86 degrees.  Maximum pitch was 28.82 degrees; 

maximum yaw was 73.37 degrees.       

Automatic action unit detection 

We compared automatic and manual FACS coding of the three 6-min video 

streams of naturally occurring facial expression during the social interaction. The video 

included out-of-plane head motion (pitch and yaw) and partial occlusion, which are 

challenging for automatic coding.  Figure 3 shows an example of the face tracking. (For 

video demo, please see supplemental materials).  The face image with tracked facial 

features appears in the bottom panel.  Across the top are the similarity transformed and 

piece-wise warped appearance.  The former is appearance after removing rotation and 

translation; translation is variation due to change in horizontal and vertical motion and 

scale.  In piece-wise normalized appearance, variation due to out-of-plane head motion 

has been removed and thus stabilized for all but non-rigid motion (i.e. expression).  To 

the right of the appearance are three representations of shape.  The first is 2D, the 

second is 3D when viewed from a ¾ of frontal pose, and the third is 3D viewed from 
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above the face.  By stabilizing the face image and estimating change in rigid head 

motion, potential confounds in AU detection due to rigid head motion are removed.  

Also, head motion may itself be an important nonverbal cue, and thus useful in its own 

right to measure.  

Insert Figure 3 about Here 

As noted above, classifiers were trained on video from an independent database 

(RU-FACS) and tested on the subjects from the experiment in progress.  Automatically 

coded AU 6 and AU 12 for the current video then were compared on a frame-by-frame 

basis with manual FACS coding.  Following previous literature (Ashraf, et al., 2009; 

Pantic & Bartlett, 2007), we quantified accuracy using receiver operator characteristics 

curves (ROC). ROC curves illustrate the relation between true and false positive rates of 

classifiers as the decision threshold varies. Area under the curve (A’) can vary from 0 to 

1.00, with 0.50 representing the expected value of random guessing.   

ROC curves are widely used in signal detection, analysis of diagnostic systems, 

and machine learning (Fawcett, 2005). They are especially useful for skewed 

distributions, such as those for action units, and unequal classification costs.   

True positive rate (TPR), also known as “sensitivity” or “recall,” is defined as: 

TPR = TP / (TP + FN) 

where TP is “true positive” and FN is “false negative.”  False positive rate (FPR), also 

known as “false alarm rate” or “1 – Sensitivity” is defined as: 

FPR = FP / (FP + TN) 

where FP is “false positive” and TN is “true negative.”   
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We first report results for the entire video.  We then report results in relation to 

occlusion and non-rigid head-motion. 

Insert Figures 4 

Concurrent validity for the entire video.  Concurrent validity was high for both 

AU 6 and AU 12 (Figure 4).  For AU 6, A’ was .96 (standard error = .002, p < .0001); for 

AU 12, A’ was .88 (standard error = .004, p < ,0001).  For comparison with inter-

observer agreement, A’ to measure false positive rates corresponding to 90% and 80% 

true positive rates.  A hit rate of 70% is required to pass the FACS certification test; hit 

rates of 70% or above are common in research that uses FACS (Ekman & Rosenberg, 

2005).     

Insert Table 1 about Here 

For AU 6, false positive rates were well within acceptable limits even when true 

positive rate was set to 90% (Table 1).  For AU 12, an 80% true positive rate yielded an 

acceptable false positive rate.   

Concurrent validity as a function of occlusion and non-rigid head motion.  To 

assess the influences of occlusion on AU detection, we computed ROC curves separately 

for video with and without occlusion.  For AU 6, occlusion reduced A’  from .97 to .91.  

For AU 12, occlusion reduced A’ from .90 to .75.     

To assess robustness to pitch and yaw, we computed ROC curves separately for 

every 5 degrees of pitch and yaw variation.  AU 6 occurred through 20 degrees pitch and 

all intervals of yaw (Table 2).  AU 12 occurred across the full range for both pitch and 
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yaw. Most variation in both pitch and yaw variation was within intervals between ± 0 to 

20 degrees; results for intervals outside of this range should be interpreted with caution. 

With respect to pitch,  A’ for AU 6 was stable (mean = .96) through ±15 degrees 

pitch and decreased to .89 at ±15 to 20 degrees pitch (Table 2).  For AU 12, A’ was stable 

through ±20 degrees pitch (mean = .88) and then decreased to .70 over the interval 

between ±20 to 25 degrees pitch.  For pitch variation greater than ±25 degrees, there 

was an uptick for AU 12. 

With respect to yaw, AU 6 was stable (mean = .97) through ±20 degrees and then 

decreased to .89 and .83 at ±20-to-25 and ±25 degrees or greater.    For AU 12, A’ was 

stable (mean = .90) through ±15 degrees yaw and then decreased gradually to .78 at yaw 

greater than ±25 degrees.   Overall, the general pattern for both AU 6 and AU 12 for 

pitch and yaw was for A’ to remain high for intervals through ±15 or 20 degrees and then 

to decrease.  For no intervals did A’ go below .70, and in all but one case was .78 or 

higher.   

Insert Table 2 about Here 

Discussion 

This study provides initial support for the use of automatic facial image analysis 

for the detection of emotion expression to detect spontaneous facial expressions arising 

during unstructured social interaction.  Specifically, using automated facial image 

analysis, two action units critical to positive emotion, AUs 6 and 12, were automatically 

detected with high reliability as compared with two independent certified FACS coders.  

For AU 6, setting true positive rate as high as 90% resulted in only a small error rate of 
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6%.  For AU 12, setting a true positive rate of 80% resulted in an acceptable error rate of 

15%.  These values may actually underestimate the effective reliability of automatic 

coding.  That is because they are based on exact agreement.  Most users of FACS, and 

many similar coding systems, estimate agreement within a precision window of 

plus/minus 0.5 to 1 second (Sayette, Cohn, Wertz, Perrott, & Parrott, 2001), which 

would effectively increase intersystem agreement. 

When hits and misses were reviewed in the video, it appeared that many false 

positives occurred with talking or were confusions with talking.  Talking has always been 

a challenge to manual FACS coding.  Guidelines for manual FACS coding were initially 

to code “Talk” (AU 50) in place of other action units in the mouth region when present. 

While this instruction often proves too costly in lost information, criteria for coding 

action units in the presence of talking remain lacking.  For an automatic system, it may 

be helpful to code talking on a continuous time base and to include that in training AU 

12 detectors.   

Partial occlusion was relatively common, occurring in about 11% of video frames.  

Face touching, holding a drink in front of or touching the face, and the face moving out 

of view were frequent causes. Had drinking not been part of the experimental protocol, 

partial occlusion may have occurred less frequently. Nevertheless, partial occlusion had 

minimal effect on accuracy for AU 6, perhaps because face touches and drinking were 

more likely to occlude only the lower face. For AU 12, area under the ROC curve 

decreased by about 13% when occlusion occurred.  The effects of occlusion were not 

uniform, but varied with AU.     

Accuracy of action detection was stable within a range of about ±15 to 20 degrees. 

Beyond that, accuracy decreased, although still remaining within acceptable limits.  The 
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findings with respect to larger values of pitch and yaw must be considered with caution, 

in that head orientation at higher ranges was relatively uncommon.  With that caveat, 

the findings suggest that automatic facial image analysis is capable of performing well 

within a much larger range of pitch and yaw than has been demonstrated previously. 

Indeed, this is the first study to report AU detection results in relation to parametric 

variation in pitch and yaw.  The findings provide initial evidence that automatic facial 

image analysis can perform well within the range of head orientation that is likely to 

occur in unscripted, spontaneous facial behavior in a social setting. 

Future research with larger data sets is needed to replicate and extend these 

preliminary findings.  Many factors may potentially influence system accuracy.  The 

influence of skin color, glasses, facial jewelry, and lighting will require careful 

evaluation. The face models appear robust to differences in ethnic or racial background 

but dark skin may require attention to illumination.   With respect to glasses, in our 

experience glasses only interfere with tracking when the lenses are highly reflective.  

When that occurs, eye closure may be difficult to detect.  In the current study, all 

participants were men; it is possible that results could have differed for women, 

although that seems unlikely.  While men have more facial texture in the lower face, 

which could contribute to extraction of appearance features, sex differences have not 

emerged in previous research using posed facial behavior. Also, in so far as women are 

more expressive or smile more than men (e.g.,LaFrance, Hecht, & Paluck, 2003), their 

facial expression in naturally occurring behavior should be more easily detected.  With 

respect to pose and occlusion, we found that AU detection was relatively robust. Future 

work will want to examine these issues and include a larger number of action units and 

emotions. 
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Despite the limitations of the current study, this initial demonstration of the 

efficacy of automated facial image analysis suggests that deployment of automated facial 

image analysis in behavioral research may be close at hand. Initial efforts have used 

automated facial image analysis to study pain (Ashraf, et al., 2009; Cohn, Lucey, et al., 

2009; Littlewort, Bartlett, & Lee, in press, 2009), smiling (Ambadar, et al., 2009; Cohn 

& Schmidt, 2004; Schmidt, Lui, & Cohn, 2006), and measurement of depression 

severity (Cohn, Simon Kreuz, et al., 2009; Wang, et al., 2008) over relatively brief 

periods under more controlled conditions.  The current paper is the first to use 

automated facial image analysis in relatively unconstrained small-group interactions 

over relatively long spans of many minutes.  In this expanded use, we found that 

automated facial image analysis had high concurrent validity with manual FACS coding. 

Automated facial image analysis appears on the verge of impacting a wide range of 

clinical and research applications. For the first time, precise and valid measurement will 

be possible without reliance on laborious training and coding.  Efficiencies of scale, 

including real-time applications (Ryan, Cohn, & Hamerski, 2009), are about to 

significantly boost research productivity and open new areas of investigation. 
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Table 1 

Selected corresponding true- and false positive rates for AU 6 and AU 12. 

 

Action Unit True Positive Rate False Positive Rate 

AU 6  90% 6% 

 80% 3% 

AU 12  90% 37% 

 80% 15% 
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Table 2 

Area under the ROC curve in relation to partial occlusion, pitch, and yaw.   

 Percentage of time Area under the ROC 

  AU 6 AU 12 

Occlusion     

  Absent 89.22  .97 (.002) .90 (.002) 

 Present 10.78  .91 (.012) .75  (.012) 

Pitch (absolute value)     

  0 to 5 degrees 41.08  .96 (.004) .86 (.004) 

  5 to 10 degrees 36.58  .97 (.004) .90 (.003) 

10 to 15 degrees 16.81  .96 (.006) .90 (.005) 

15 to 20 degrees  4.50  .89 (.061) .87 (.020) 

20 to 25 degrees   .71  NA .70 (.037) 

> 25 degrees   .32  NA .94 (.027) 

Yaw (absolute value)     

  0 to 5 degrees 42.85  .96 (.004) .87 (.004) 

  5 to 10 degrees 34.75  .97 (.004) .91 (.004) 



Automated Facial Coding p. 28 
 

10 to 15 degrees 16.69  .97 (.004) .91 (.005) 

15 to 20 degrees 3.37  .98 (.004) .84 (.013) 

20 to 25 degrees 1.10  .89 (.036) . 80 (.038) 

> 25 degrees 1.23  .83 (.064) .78 (.030) 

Note. All p < .0001.   

NA = No occurrences of the AU for this range. 
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Figure legends 

Figure 1.  An example of the image capture.  Separate wall-mounted cameras were 

directed at each participant. A ceiling-mounted camera recorded an overview.  Face 

meshes from the AAM are superimposed on the source video. 

Figure 2.  An example of the computation of AAM shape and appearance. The figure 

shows the mean and first two modes of variation of 2D AAM shape (a–c) and 

appearance (d–f) variation and the mean and first two modes of 3D AAM shape. From 

Xiao, Baker, Matthews, & Kanade (2004). © IEEE. 

Figure 3.  Screen shot of automated face tracking and AU detection.  Row 2 shows a 

subject’s tracked face and frame-by-frame detection results for AU 6 and AU 12.   Row 1 

column A shows corresponding 2D face appearance normalized for head translation, 

scale, and rotation.  Row 1 column B shows the appearance after normalizing for pitch 

(e.g., head nodding) and yaw (e.g., head turning).  Row 1 columns C through E show 2D 

and 3D representations of the corresponding face shapes.  Row 1 column F shows the 

estimated 3D parameters (pitch, roll, and yaw).  Please see Supplementary Materials for 

video examples (The video examples also are available at  

http://www.pitt.edu/~jeffcohn/D102_G006A1_trim.mov 

and http://www.pitt.edu/~jeffcohn/D102_G014A1_trim.mov). 

Figure 4.  The receiver operating characteristics (ROC) curves for AU 6 and AU 12 in 

comparison with random guessing (depicted by the diagonal lines). The corresponding 

areas under the ROC were 0.94 (standard error = .002, p < .0001) and 0.85 (standard 

error = .004, p < .0001).  
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